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Abstract. Matter implies the existence of a large-scale connected cluster of a uniform nature. The appear-
ance of such clusters as a function of hadron density is specified by percolation theory. We can therefore
formulate the freeze-out of interacting hadronic matter in terms of the percolation of hadronic clusters.
The resulting freeze-out condition as a function of temperature and baryo-chemical potential interpolates
between resonance gas behavior at low baryon density and repulsive nucleonic matter at low temperature,
and it agrees well with the data.

Consider a hot quark–gluon plasma in thermodynamic
equilibrium, specified in terms of temperature T and baryo-
chemical potential µ. Reducing the temperature of this
medium at constant µ eventually brings it to the confine-
ment transition at Tc, µ(Tc). Below this temperature, the
system consists of interacting hadrons. Further cooling fi-
nally leads to freeze-out, at Tf , µ(Tf); beyond this point, we
have non-interacting hadrons. The resulting two dividing
lines in the T–µ plane are schematically shown in Fig. 1.

While the line separating the deconfined QGP state
from the confined hadronic medium is calculable in lattice
QCD at finite temperature and density (although so far
with considerable problems at large µ and low T ), the
freeze-out curve is less well-defined theoretically as well as
experimentally. The aim of the present paper is to address
how freeze-out can be specified conceptually.

In the two limiting cases of hot hadronic matter of van-
ishing overall baryon density and cold nuclear matter at
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Fig. 1. States of matter in QCD, general view

vanishing temperature, we can make use of some specific
aspects of the relevant dynamics. The confinement tran-
sition leads to an interacting hadronic medium. Now it is
known that if the interactions between the constituents
of such a medium are dominated by resonance formation
and decay, the system can be treated as an ideal gas of
all possible resonances [1, 2]. In our context this means
that if and when the interacting hadronic medium is reso-
nance dominated, freeze-out effectively occurs at the point
of confinement. In particular, the relative abundances of
the different species of hadrons and hadronic resonances
are in this case determined at the transition from QGP to
hadronic matter.

For systems of vanishing or low baryon density, this
appears to be quite well supported. On a theoretical level,
it is in fact claimed that resonance formation dominates
the interaction between hadrons, perhaps most clearly in
the dual resonance model [3]. Experimentally, an analy-
sis of the species abundances indicates that these are in-
deed determined by a single freeze-out temperature, Tf �
175 MeV, obtained in e+e− annihilation, p–p and p–p̄ inter-
actions as well as in heavy ion collisions [4]. This temper-
ature is moreover completely in accord with that found
for the confinement transition in finite temperature lat-
tice QCD [5].

On the other extreme, for dense nuclear matter at low
temperature, the situation is quite different. The inter-
action between two nucleons does not lead to resonance
formation; instead, it is dominated by Fermi statistics and
baryon repulsion. In particular, at T = 0, freeze-out must
occur at a density equal to that of normal nuclear matter,
n0 � 0.17 fm−3. If we consider a system of non-interacting
nucleons at T = 0, the corresponding value of the baryo-
chemical potential is obtained from

n0(T = 0, µ) =
2

3π2 (µ2 − m2)3/2 = 0.17 fm3 (1)
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and found to be µ0 � 0.979 GeV. Note that for T = 0
and this value of µf , the system consists only of nucle-
ons. The threshold for the occurrence of baryon resonances
is µ = 1.23 GeV, corresponding to 4.2 fm−3 or about 25
times normal nuclear density. Hence interacting cold nu-
clear matter very likely contains only nucleons over the
entire range from freeze-out at µf = µ0 to the deconfine-
ment value µc, where it becomes cold quark matter. The
freeze-out value of µ thus obtained is, however, in prin-
ciple somewhat model-dependent. We have here assumed
the repulsion to be totally given by Fermi statistics; there
could well be additional repulsion beyond this. Using hard
core repulsion with a core volume V0 [6], (1) is replaced by

nV (T = 0, µ) =
n0(T = 0, µ)

1 + n0(T = 0, µ)V0
= 0.17 fm−3. (2)

The result is a freeze-out at slightly higher values of µ.
To illustrate, for V0 = (4π/3)R3 and a nucleon radius of
0.8 fm, freeze-out occurs at µV � 0.992 GeV. Such a hard
core is presumably too large; reducing R will reduce the
resulting µV , so that the physical value falls most likely
between the values of µ0 and µV .

Empirically, the determination of freeze-out parame-
ters through the relative abundance of hadron species so
far appears to be the only unambiguous approach to the
problem. We therefore adopt this “chemical” freeze-out
definition in the remainder of the paper. As an immediate
consequence, we have to revise Fig. 1. At µ = 0, Tf = Tc,
while at T = 0, µf � µ0 < µc, as shown in Fig. 2. From
what was said above, it is clear that for very low temper-
atures, specifying freeze-out through species abundances
becomes problematic, since near T = 0, the system con-
tains only nucleons. This has to be kept in mind when
studying cool baryon-rich media.

Looking at Fig. 2, we note that we have so far identi-
fied only Tf = Tc at µ = 0 and µf at T = 0. To determine
the entire freeze-out curve in the T–µ plane, we have to
know how the contributions from non-resonant baryon in-
teractions modify the ideal resonance gas picture, in or-
der to specify how the freeze-out curve departs from the
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Fig. 2. States of matter in QCD, including resonance gas
effects

confinement curve. In other words, we have to identify a
freeze-out condition.

A very successful phenomenological parametrization [7]
of the available heavy ion data is obtained by requiring the
average hadron energy per average hadron number to be
constant at freeze-out,

〈E〉
〈N〉 � 1 GeV. (3)

While this parametrization accounts well for all data from
SIS to RHIC experiments, it is clear that it encounters
difficulties for sufficiently low temperature. At T = 0, it
leads to freeze-out at µ � 1.039 GeV. With Fermi repulsion
only, this corresponds to nf � 0.73 fm−3 � 4.6 n0, with the
hard core repulsion used above it gives nf � 0.285 fm−3 �
1.7 n0. Both values would exclude the existence of normal
nuclear matter, for which 〈E〉/〈N〉 is below 1 GeV. Since it
is also not known what features of the underlying physics
could lead to (12) as freeze-out condition, it seems worth-
while to study possible freeze-out mechanisms and attempt
to find a consistent description for the entire T–µ plane.

Matter implies the existence of a large-scale intercon-
nected medium of uniform nature. When such a system
breaks up into fragments much smaller than the size of
the volume in which it is contained, it has undergone a
change of state. One possible way to define freeze-out is
thus geometric: it occurs at the point at which the size of
the largest hadronic clusters falls below the size of the given
overall spatial volume. This point is determined in perco-
lation theory [8] and for three space dimensions becomes

nf =
0.34
Vh

, (4)

where n = N/V specifies the hadron density, with N
hadrons in the overall volume V . The volume of an indi-
vidual hadron is denoted by Vh = (4π/3)r3

h, and hadrons
are allowed to overlap; thus Vh introduces the short range
nature (∼ rh) of hadronic forces [9].

When the hadron density has reached the percolation
point n = nf , the largest clusters reach the size of the
overall volume. This, however, does not imply that they
fill the volume. In fact, it is known that at the percola-
tion point, still exp{−0.34} � 71% remain empty space.
Hence the vacuum, measured in terms of the hadronic scale
rh, also forms percolating clusters. We can therefore ask
for what density vacuum percolation stops and only the
strongly interacting medium spans the entire space. This
occurs for

nc =
1.24
Vh

, (5)

obtained in an analogous way as (1). For densities above
n = nc, any large-scale vacuum has disappeared. Since the
disappearance of the physical vacuum is a basic feature of
deconfinement, it seems natural to relate this threshold to
the confinement/deconfinement transition.

Hence, on a purely geometric basis in terms of con-
nected clusters, we have two thresholds: at n = nf , there
appear clusters of the size of the overall spatial volume,
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and at n = nc, the vacuum disappears as a connected
medium [9]. Let us see if and how they could be related to
the known freeze-out points at T = 0 and at µ = 0.

At T = 0, we expect freeze-out to occur only when
the nucleons no longer form interconnected matter. If we
use the nucleon radius rn � 0.8 fm for rh, (4) leads to
nf � 0.16 fm−3 as the freeze-out density, and this is in
good approximation the density of normal nuclear mat-
ter. The correspondence between hadron percolation and
freeze-out thus works well at T = 0. It defines nuclear
matter as the most dilute system of nucleons which still
forms connected matter.

Can we also relate the other extreme, freeze-out and
deconfinement at µ = 0, to percolation? Equation (5) de-
termines the density of hadrons for which the vacuum dis-
appears as a connected medium. From the arguments given
above, we can consider the interacting hadron system at
µ = 0 as an ideal resonance gas. Hence it seems natural
to use the vacuum percolation condition

n(T, µ = 0) =
1.24

(4π/3)r3
h

, (6)

for the ideal resonance gas density n(T, µ = 0) to deter-
mine both freeze-out and deconfinement. To obtain n(T, µ)
and other necessary observables of such a system, we briefly
recall the essentials of the ideal resonance gas model.

In thermodynamics, a closed system of fixed energy
E, volume V , and number Ni of particles of type i is de-
scribed as a microcanonical ensemble. Bringing this system
in contact with a heat bath leads to the canonical ensem-
ble, having an average energy 〈E〉 = tr(ρH), while V and
Ni are conserved exactly. If we further also let the particle
numbers Ni fluctuate with only their averages conserved,
we obtain the grand canonical ensemble. For this, we have

ZG = tr e−β(H−µiNi) =
∏

i

∑
Ni

λNi
i ZNi , (7)

where λi = eβµi is the fugacity of particle species i and
ZNi

the corresponding canonical partition function. The
chemical potentials µi assure particle number conservation
in an average sense. Changing the summation over discrete
quantum states to phase space integration, we obtain the
grand canonical partition in the form

lnZG =
∑

i

gi
V

2π2

∫ ∞

0
dp p2 ln

[
1 + ηiλie−βp0

i

]ηi

, (8)

where p0
i =

√
p2 + m2

i , with mi for the mass of the particle
species i, gi counts the spin/isospin degeneracy, and ηi is
the statistics factor, with ηi = 1 for fermions and ηi = −1
for bosons.

In a relativistic gas, in which the particle numbers are
generally not conserved, the chemical potentials are as-
sociated to the conserved baryon, charge and strangeness
quantum numbers B, Q and S. The abundance of strange-
ness is complicated by the larger strange quark mass, which
could prevent that strange quarks are produced as abun-
dantly as the lighter non-strange quarks. In order to allow

for a resulting reduced strangeness production, the pa-
rameter γs (γs ≤ 1) was introduced [10]. For γs = 1, no
suppression occurs, while for γs < 1, fewer strange quarks
appear, with a corresponding suppression of strange par-
ticle production. A factor γs is associated to each strange
quark, so that for hadrons containing fs strange quarks,
there is an additional multiplier γfs

s in the fugacity. We
thus have

λi = γfs
s λBi

B λQi

Q λSi

S , (9)

where Bi, Qi and Si are the quantum numbers for in-
dividual particle species. Then the particle numbers are
given by

〈Ni〉 = gi
V

2π2

∫ ∞

0
dp p2

[
(γfs

s λBi

B λQi

Q λSi

S )−1eβp0
i + ηi

]−1
,

(10)
and the overall density of hadronic constituents by

n(T, µ) =
∑

i 〈Ni〉
V

. (11)

The average net baryon number, i.e., the number of baryons
minus that of antibaryons, is the sum over the particle
numbers weighted by the baryon quantum number,

〈NB〉 =
∑

i

Bi〈Ni〉, (12)

and the corresponding baryon density is

nB(T, µ) =
〈NB〉

V
. (13)

From

〈E〉 = (14)

∑
i

gi
V

2π2

∫ ∞

0
dp p2p0

i

[
(γfs

s λBi

B λQi

Q λSi

S )−1eβp0
i + ηi

]−1

we obtain with

ε =
〈E〉
V

. (15)

a similar relation for the energy density.
For µ = 0, we now use (11) in the percolation con-

dition (5), including all observed resonances up to mass
2.5 GeV, with the nucleon radius rh = 0.8 fm for baryons;
for mesons, we use a value smaller by a factor (2/3)3/4 �
1.1, as suggested by bag model arguments. This determines
the threshold temperature for confinement and (species
abundance) freeze-out at vanishing baryon density, giving
Tc = Tf � 167 MeV for γs = 1 and 175 MeV for γs = 0.5.

We have thus specified Tf = Tc at µ = 0 through
vacuum percolation and µf at T = 0 through nucleon per-
colation.

To define a freeze-out curve in the whole T–µ plane, we
have to combine the resonance gas aspects at low baryon
density with the baryon repulsion nature at high baryon
density. If we move from µ = 0 to finite µ, the resulting
medium is no longer an ideal gas, since now baryon inter-
actions are present, which are not accountable in terms of
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resonances. To reach freeze-out, the system has to expand
and cool off enough to stop these non-resonant baryon
contributions. It is thus clear that for µ �= 0, freeze-out
will occur for Tf < Tc, below deconfinement. In particu-
lar, as is seen from Fig. 2, when we reach µ = µf , the
interacting hadronic medium formed at the confinement
point still contains mesons; but these have disappeared
when the medium has cooled off enough to freeze out all
dynamical baryon repulsion, leaving cold nuclear matter
of standard density.

Given the overall hadron density n(T, µ) and the net
baryon number density nB(T, µ) through (11) and (13), re-
spectively, we can specify a freeze-out temperature showing
the behavior just outlined. We assume that the sector of
vanishing baryon density freezes out according to the reso-
nance gas approximation and by vacuum percolation, that
of finite baryon number according to baryon percolation,
to obtain

n(T, µ) =
1.24
Vh

[
1 − nB(T, µ)

n(T, µ)

]
+

0.34
Vh

[
nB(T, µ)
n(T, µ)

]
(16)

as the defining equation for the freeze-out curve. It is clear
that when µ = 0, we recover condition (5), while in the
limit of a cold nucleon gas, with n/nB = 1, we get back
(4). Moreover, it determines freeze-out fully in terms of
geometric clustering based on the intrinsic hadronic scale.
The model contains no adjustable parameters, with the ex-
ception of a possible γs < 1. In principle, γs could depend
on the initial collider energy or on µ. However, variations
of γs have only little effect on the resulting curve, as al-
ready noted for the limiting case of µ = 0, and this effect
decreases further for higher µ. Therefore we will perform
our calculations for fixed γs = 0.5.

We now turn to a comparison of our results to the rele-
vant data. Starting with data for freeze-out temperatures
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Fig. 3. Freeze-out temperature in elementary hadron collisions,
from [4]
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Fig. 4. Freeze-out in heavy ion collisions, from [11]
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Fig. 5. Freeze-out from percolation and from 〈E〉/〈N〉 = 1 GeV

at µ = 0, we show in Fig. 3 a recent compilation of data
from elementary hadron collisions [4]; it is seen that the
range T � 170 ± 5 MeV obtained from the vacuum perco-
lation condition (4) for 0.5 ≤ γs ≤ 1 is in good agreement
with the data.

Coming to heavy ion collisions, we show in Fig. 4 results
from the four different facilities. Also here the agreement
is seen to be very good, with clear deviations only for the
lowest energy data from SIS. While we have no explanation
for this, it should be noted that at such low energies, sec-
ondary hadron production is a rather rare process, making
a freeze-out determination from species abundances more
difficult. In particular, the number of nucleons is now fixed
by the mass of the colliding nuclei, not by any thermal pa-
rameter. It is rather surprising that the data fall below the
expected curve. Our assumption of an ideal nucleon gas
at high baryon density could well be an oversimplification;
but we saw above that further dynamical repulsion, be-
yond the effect due to the Fermi statistics of the nucleons,
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in fact leads to a freeze-out at higher µ. One might thus
wonder whether threshold effects at SIS energies could lead
to an effective reduction of the freeze-out temperature.

Finally, we compare our freeze-out condition with that
obtained from 〈E〉/〈N〉 = 1 GeV [7]. In Fig. 5, we show
both forms together with the data. While the two models
never differ by more than 10%, the form of [7], in contrast
to ours, provides good agreement also for the SIS point.
On the other hand, 〈E〉/〈N〉 = 1 GeV leads to a rather
sudden change of behavior for µ ≥ 0.85 GeV, which puts
nuclear matter below the freeze-out point in µ.
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